题目内容
(本题满分18分,第(1)小题4分,第(2)小题6分,第(2)小题8分)
已知双曲线C:的一个焦点是,且。
(1)求双曲线C的方程;
(2)设经过焦点的直线的一个法向量为,当直线与双曲线C的右支相交于不同的两点时,求实数的取值范围;并证明中点在曲线上。
(3)设(2)中直线与双曲线C的右支相交于两点,问是否存在实数,使得为锐角?若存在,请求出的范围;若不存在,请说明理由。
已知双曲线C:的一个焦点是,且。
(1)求双曲线C的方程;
(2)设经过焦点的直线的一个法向量为,当直线与双曲线C的右支相交于不同的两点时,求实数的取值范围;并证明中点在曲线上。
(3)设(2)中直线与双曲线C的右支相交于两点,问是否存在实数,使得为锐角?若存在,请求出的范围;若不存在,请说明理由。
(1)(2)略 (3)略
(1)
。 ……………………………………4分
(2) 由得
由 得
……………………………………6分
……………………………………8分
设,则
……………………………………10分
。 ……………………………………12分
(3), ,
……………………………………14分
因为
……………………………………16分
即
,
……………………………………18分
。 ……………………………………4分
(2) 由得
由 得
……………………………………6分
……………………………………8分
设,则
……………………………………10分
。 ……………………………………12分
(3), ,
……………………………………14分
因为
……………………………………16分
即
,
……………………………………18分
练习册系列答案
相关题目