题目内容
设动点到定点的距离比它到轴的距离大1,记点的轨迹为曲线.
(1)求点的轨迹方程;
(2)设圆过,且圆心在曲线上,是圆在轴上截得的弦,试探究当运动时,弦长是否为定值?为什么?
(1)求点的轨迹方程;
(2)设圆过,且圆心在曲线上,是圆在轴上截得的弦,试探究当运动时,弦长是否为定值?为什么?
(1)曲线方程是
(2)当运动时,弦长为定值4
(2)当运动时,弦长为定值4
(1)依题意知,动点到定点的距离等于到直线的距离,曲线是以原点为顶点,为焦点的抛物线………………………………2分
∵ ∴
∴ 曲线方程是………4分
(2)设圆的圆心为,∵圆过,
∴圆的方程为 ……………………………7分
令得:
设圆与轴的两交点分别为,
方法1:不妨设,由求根公式得
,…………………………10分
∴
又∵点在抛物线上,∴,
∴ ,即=4--------------------------------------------------------13分
∴当运动时,弦长为定值4…………………………………………………14分
〔方法2:∵,
∴
又∵点在抛物线上,∴,∴
∴当运动时,弦长为定值4〕
∵ ∴
∴ 曲线方程是………4分
(2)设圆的圆心为,∵圆过,
∴圆的方程为 ……………………………7分
令得:
设圆与轴的两交点分别为,
方法1:不妨设,由求根公式得
,…………………………10分
∴
又∵点在抛物线上,∴,
∴ ,即=4--------------------------------------------------------13分
∴当运动时,弦长为定值4…………………………………………………14分
〔方法2:∵,
∴
又∵点在抛物线上,∴,∴
∴当运动时,弦长为定值4〕
练习册系列答案
相关题目