题目内容
3.已知数列{an}满足a1=2,an+1=3an+2(n∈N*)(1)求证:数列{an+1}是等比数列;
(2)设bn=nan,求数列{bn}的前n项和Tn.
分析 (1)通过对an+1=3an+2(n∈N*)变形可知an+1+1=3(an+1),进而即得结论;
(2)通过(1)可知bn=n3n-n,进而Tn=1•31+2•32+3•33+…+n•3n-$\frac{n(n+1)}{2}$,利用错位相减法计算可知Qn=1•31+2•32+3•33+…+n•3n=($\frac{n}{2}$-$\frac{1}{4}$)•3n+1+$\frac{3}{4}$,进而计算可得结论.
解答 (1)证明:∵an+1=3an+2(n∈N*),
∴an+1+1=3(an+1),
又∵a1+1=2+1=3,
∴数列{an+1}是以首项、公比均为3的等比数列;
(2)解:由(1)可知:an+1=3n,
∴bn=nan=n(3n-1)=n3n-n,
∴Tn=1•31+2•32+3•33+…+n•3n-(1+2+3+…+n)
=1•31+2•32+3•33+…+n•3n-$\frac{n(n+1)}{2}$,
记Qn=1•31+2•32+3•33+…+n•3n,
则$\frac{1}{3}$Qn=1•30+2•31+3•32+…+(n-1)•3n-2+n•3n-1,
两式相减得:-$\frac{2}{3}$Qn=30+31+32+…+3n-2+3n-1-n•3n
=$\frac{1-{3}^{n}}{1-3}$-n•3n
=($\frac{1}{2}$-n)•3n-$\frac{1}{2}$,
∴Qn=-$\frac{3}{2}$[($\frac{1}{2}$-n)•3n-$\frac{1}{2}$]=($\frac{n}{2}$-$\frac{1}{4}$)•3n+1+$\frac{3}{4}$,
∴Tn=1•31+2•32+3•33+…+n•3n-$\frac{n(n+1)}{2}$
=($\frac{n}{2}$-$\frac{1}{4}$)•3n+1+$\frac{3}{4}$-$\frac{n(n+1)}{2}$.
点评 本题考查等比数列的判定,考查数列的通项及前n项和,注意解题方法的积累,属于中档题.
A. | φ | B. | {d} | C. | {a,c} | D. | {b,e} |
A. | 13 | B. | 14 | C. | 15 | D. | 14或15 |