题目内容

15.已知在△ABC中,内角A、B、C的对边分别为a、b、c.且bcosC=(2a-c)cosB.
(1)求$\frac{2sin(B+\frac{π}{4})sin(A+C+\frac{π}{4})}{1-cos2B}$的值;
(2)若b=2,求△ABC的面积S的取值范围.

分析 (1)由条件利用正弦定理、诱导公式求得cosB=$\frac{1}{2}$,可得B的值,从而利用积化和差公式求得要求式子的值.
(2)利用余弦定理求得ac≤4,可得△ABC的面积S=$\frac{1}{2}$ac•sinB 的范围.

解答 解:(1)△ABC中,∵bcosC=(2a-c)cosB,
由正弦定理得:(2sinA-sinC)cosB=sinBcosC.
∴2sinA•cosB-sinC•cosB=sinBcosC,
化为:2sinA•cosB=sinC•cosB+sinBcosC,∴2sinA•cosB=sin(B+C).
∵在△ABC中,sin(B+C)=sinA,
∴2sinA•cosB=sinA,得:cosB=$\frac{1}{2}$,B=$\frac{π}{3}$.
故$\frac{2sin(B+\frac{π}{4})sin(A+C+\frac{π}{4})}{1-cos2B}$=$\frac{2sin\frac{7π}{12}•sin\frac{11π}{12}}{1-cos\frac{2π}{3}}$=$\frac{cos\frac{π}{3}-cos\frac{3π}{2}}{1+\frac{1}{2}}$=$\frac{1}{3}$.
(2)b=2,则由余弦定理可得b2=4=a2+c2-2ac•cosB≥2ac-ac=ac,∴ac≤4,
△ABC的面积S=$\frac{1}{2}$ac•sinB≤$\frac{1}{2}$×4×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,故S∈(0,$\sqrt{3}$].

点评 本题主要考查正弦定理、诱导公式、积化和差公式、余弦定理、基本不等式的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网