题目内容
7.等差数列{an}的前项和为Sn,已知am+1+am-1-am2=0,S2m-1=38,则m=( )A. | 5 | B. | 6 | C. | 8 | D. | 10 |
分析 由等差数列的性质和求和公式可得m的方程,解方程可得.
解答 解:由等差数列的性质可得am-1+am+1=2am,
又∵am-1+am+1-am2=0,
∴2am-am2=0,
解得am=0或am=2,
又S2m-1=$\frac{(2m-1)({a}_{1}+{a}_{2m-1})}{2}$=$\frac{(2m-1)×2{a}_{m}}{2}$=(2m-1)am=38,
∴am=0应舍去,∴am=2,
∴2(2m-1)=38,解得m=10
故选:D
点评 本题考查学生掌握等差数列的性质,灵活运用等差数列的前n项和的公式化简求值,是一道中档题.
练习册系列答案
相关题目
18.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院 抄录了1至6月份每月10日的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程$\widehat{y}$=bx+a;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
(参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}-\overline{x}{y}_{i}-\overline{y}}{\sum_{i=1}^{n}{x}_{i}-\overline{{x}^{2}}}$,a=$\overline{y}$-b$\overline{x}$.)
日期 | 昼夜温差x(℃) | 就诊人数y(人) |
1月10日 | 10 | 22 |
2月10日 | 11 | 25 |
3月10日 | 13 | 29 |
4月10日 | 12 | 26 |
5月10日 | 8 | 16 |
6月10日 | 6 | 12 |
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程$\widehat{y}$=bx+a;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
(参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}-\overline{x}{y}_{i}-\overline{y}}{\sum_{i=1}^{n}{x}_{i}-\overline{{x}^{2}}}$,a=$\overline{y}$-b$\overline{x}$.)
17.已知椭圆的方程是$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1,以椭圆的长轴为直径作圆,若直线x=x0与圆和椭圆在x轴上方的部分分别交于P,Q两点,则△POQ的面积S△POQ的最大值为( )
A. | $\frac{3}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{2}$ |