题目内容
(本小题满分12分)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231151524146315.jpg)
如图,在正四棱柱ABCD—A1B1C1D1中,AA1=
AB,点E、M分别为A1B、C1C的中点,过点A1,B,M三点的平面A1BMN交C1D1于点N.
(Ⅰ)求证:EM∥平面A1B1C1D1;
(Ⅱ)求二面角B—A1N—B1的正切值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231151524146315.jpg)
如图,在正四棱柱ABCD—A1B1C1D1中,AA1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115152430225.gif)
(Ⅰ)求证:EM∥平面A1B1C1D1;
(Ⅱ)求二面角B—A1N—B1的正切值.
(Ⅱ)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115152445267.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115152445267.gif)
(Ⅰ)证明:取A1B1的中点F,连EF,C1F ∵E为A1B中点 ∴EF∥
BB1 又∵M为CC1中点∴EF∥ C1M∴四边形EFC1M为平行四边形 ∴EM∥FC1
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231151525083610.gif)
而EM
平面A1B1C1D1 . FC1
平面A1B1C1D1 .
∴EM∥平面A1B1C1D1………………6分
(Ⅱ)由⑴EM∥平面A1B1C1D1
EM
平面A1BMN,平面A1BMN∩平面A1B1C1D1=A1N
∴A1N// EM// FC1 ∴N为C1D1中点,过B1作B1H⊥A1N于H,连BH,根据三垂线定理 BH⊥A1N
∠BHB1即为二面角B—A1N—B1的平面角……8分
设AA1=a,则AB=2a, ∵A1B1C1D1为正方形
∴A1H=
又∵△A1B1H∽△NA1D1
∴B1H=
,在Rt△BB1H中,
tan∠BHB1=
即二面角B—A1N—B1的正切值为
……12分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115152430225.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231151525083610.gif)
而EM
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115152539194.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115152633135.gif)
∴EM∥平面A1B1C1D1………………6分
(Ⅱ)由⑴EM∥平面A1B1C1D1
EM
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115152633135.gif)
∴A1N// EM// FC1 ∴N为C1D1中点,过B1作B1H⊥A1N于H,连BH,根据三垂线定理 BH⊥A1N
∠BHB1即为二面角B—A1N—B1的平面角……8分
设AA1=a,则AB=2a, ∵A1B1C1D1为正方形
∴A1H=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115152679256.gif)
∴B1H=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115152679622.gif)
tan∠BHB1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115152695671.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115152445267.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目