题目内容

一个半径为1的小球在一个内壁棱长为的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是.
如答12图1,考虑小球挤在一个角时的情况,记小球半径为,作平面//平面,与小球相切于点,则小球球心为正四面体的中心,,垂足的中心.





,从而
记此时小球与面的切点为,连接,则

考虑小球与正四面体的一个面(不妨取为)相切时的情况,易知小球在面上最靠近边的切点的轨迹仍为正三角形,记为,如答12图2.记正四面体
的棱长为,过
,有,故小三角形的边长
小球与面不能接触到的部分的面积为(如答12图2中阴影部分)
.         
,所以

由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为.  
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网