题目内容

【题目】已知△ABC为锐角三角形,命题p:不等式logcosC >0恒成立,命题q:不等式logcosC >0恒成立,则复合命题p∨q、p∧q、¬p中,真命题的个数为(
A.0
B.1
C.2
D.3

【答案】B
【解析】解:由锐角三角形ABC,可得1>cosC>0,0<A< ,0<B< <A+B<π,
∴0< ﹣A<B<
∴sinB>sin( ﹣A)=cosA>0,
∴1> >0,
∴logcosC >0,
故命题p是真命题,命题q是假命题;
则复合命题p∨q真、p∧q假、¬p假,真命题的个数是1个;
故选:B.
【考点精析】关于本题考查的复合命题的真假,需要了解“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网