题目内容
【题目】如图,ABCD与ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:
(1)BE∥平面DMF;
(2)平面BDE∥平面MNG.
【答案】见解析
【解析】
试题分析:(1)欲证线面平行常转化为找线与面中的一条直线平行.
本题中可结合题中的中点条件,找线BE与面中的线MO平行得证.
(2)证面面平行,需运用面与面平行的判定找线与面平行,
利用中点条件找出两条相交直线DE和BD与面BDE平行得证.
试题解析:(1)如图,连接AE,则AE必过DF与GN的交点O,连接MO,
则MO为△ABE的中位线,所以BE∥MO,
又BE平面DMF,MO平面DMF,所以BE∥平面DMF.
(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,
又DE平面MNG,GN平面MNG,所以DE∥平面MNG.
又M为AB中点,所以MN为△ABD的中位线,所以BD∥MN,
又BD平面MNG,MN平面MNG,所以BD∥平面MNG,又DE与BD为平面BDE 内的两条相交直线, 所以平面BDE∥平面MNG.
【题目】某公司为确定下一年投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年利润y(单位:万元)的影响,对近5年的宣传费xi和年利润yi(i=1,2,3,4,5)进行了统计,列出了下表:
x(单位:千元) | 2 | 4 | 7 | 17 | 30 |
y(单位:万元) | 1 | 2 | 3 | 4 | 5 |
员工小王和小李分别提供了不同的方案.
(1)小王准备用线性回归模型拟合y与x的关系,请你建立y关于x的线性回归方程(系数精确到0.01);
(2)小李决定选择对数回归模拟拟合y与x的关系,得到了回归方程: =1.450lnx+0.024,并提供了相关指数R2=0.995,请用相关指数说明选择哪个模型更合适,并预测年宣传费为4万元的年利润(精确到0.01)(小王也提供了他的分析数据 (yi﹣ i)2=1.15) 参考公式:相关指数R2=1﹣
回归方程 = x+ 中斜率和截距的最小二乘法估计公式分别为 = , = ﹣ x,参考数据:ln40=3.688, =538.