题目内容

2.已知函数f(x)=sin(2x+$\frac{π}{3}$),若[a,b]⊆[0,π],且f(a)=f(b),则a的取值范围是[$\frac{π}{6}$,$\frac{7π}{12}$).

分析 由条件利用正弦函数的图象的对称性,可得$\frac{2π}{3}$≤2a+$\frac{π}{3}$<$\frac{3π}{2}$,由此求得a的取值范围.

解答 解:当x∈[0,π],则t=2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{7π}{3}$],
由[a,b]⊆[0,π],且f(a)=f(b),
可得点(a,f(a))和点(b,f(b))关于直线t=$\frac{3π}{2}$ 对称,如图:
故有$\frac{2π}{3}$≤2a+$\frac{π}{3}$<$\frac{3π}{2}$,
求得a∈[$\frac{π}{6}$,$\frac{7π}{12}$),
故答案为:[$\frac{π}{6}$,$\frac{7π}{12}$).

点评 本题主要考查正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网