题目内容
【题目】已知向量, .
(1)若分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6),先后抛掷两次时第一次、第二次出现的点数,求满足的概率;
(2)若在连续区间上取值,求满足的概率.
【答案】(1) ;(2) 概率为.
【解析】试题分析:(1)本小题考査的知识点是古典概型,关键是要找出满足条件满足的基本事件个数,及总的基本事件的个数,再代入古典概型公式进行计算求解;(2)本小题考査的知识点是几何概型的意义,关键是要画出满足条件的图形,结合图形分析,找出满足条件的点集对应的图形面积,及图形的总面积.
试题解析:(1)将一枚质地均匀的正方体骰子先后抛掷两次时,所包含的基本事件总数为
个,由,有 的基本事件有
故其概率为.
(2)若在连续区间上取值,则其全部基本事件的区域为,
满足的基本事件的区域为 且,
如图,所求的概率即为梯形的面积,
满足的概率为
【题目】已知椭圆的中心在坐标原点,焦点在轴上,离心率,且椭圆经过点,过椭圆的左焦点且不与坐标轴垂直的直线交椭圆于, 两点.
(1)求椭圆的方程;
(2)设线段的垂直平分线与轴交于点,求△的面积的取值范围.
【题目】某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.
整理评分数据,将分数以为组距分成组: , , , , , ,得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:
B餐厅分数频数分布表 | |
分数区间 | 频数 |
定义学生对餐厅评价的“满意度指数”如下:
分数 | |||
满意度指数 |
(Ⅰ)在抽样的100人中,求对A餐厅评价“满意度指数”为的人数;
(Ⅱ)从该校在A,B两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对A餐厅评价的“满意度指数”比对B餐厅评价的“满意度指数”高的概率;
(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.