题目内容
12.若M点的极坐标为$({2,\frac{5π}{6}})$,则M点的直角坐标是( )A. | (-$\sqrt{3}$,1) | B. | (-$\sqrt{3}$,-1) | C. | ($\sqrt{3}$,-1) | D. | ($\sqrt{3}$,1) |
分析 利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可得出.
解答 解:∵$x=2cos\frac{5π}{6}$=-$\sqrt{3}$,y=2$sin\frac{5π}{6}$=1,
∴M点的直角坐标是$(-\sqrt{3},1)$.
故选:A.
点评 本题考查了把极坐标化为直角坐标的方法,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
2.某同学为了解秋冬季节用电量(y度)与气温(x℃)的关系,由如表数据计算出回归直线方程为y=-2x+60,则表中a的值为38.
气温 | 18 | 13 | 10 | -1 |
用电量(度) | 24 | 34 | a | 64 |
7.方程mx2+y2=1所表示的所有可能的曲线是( )
A. | 椭圆、双曲线、圆 | B. | 椭圆、双曲线、抛物线 | ||
C. | 两条直线、椭圆、圆、双曲线 | D. | 两条直线、椭圆、圆、双曲线、抛物线 |
17.在△ABC中,若tan A•tan B<1,则△ABC的形状是( )
A. | 锐角三角形 | |
B. | 直角三角形 | |
C. | 钝角三角形 | |
D. | 可能是锐角三角形,也可能是钝角三角形 |
4.一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:
参考数据:$\sum_{i=1}^{7}$xiyi=3245,$\overline{x}$=25,$\overline{y}$≈15,$\sum_{i=1}^{7}$xi2=5075.
参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x\overline{y}}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$
(1)由散点图可知进店人数和商品销售件数成线性相关关系,设回归方程为$\widehat{y}$=bx+a,求该回归方程(b保留到小数点后两位);
(2)预测进店80人时,商品销售的件数(结果保留整数).
人数xi(人) | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
件数yi(件) | 4 | 7 | 12 | 12 | 20 | 23 | 27 |
参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x\overline{y}}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$
(1)由散点图可知进店人数和商品销售件数成线性相关关系,设回归方程为$\widehat{y}$=bx+a,求该回归方程(b保留到小数点后两位);
(2)预测进店80人时,商品销售的件数(结果保留整数).
2.函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x-8,x>0}\\{-x-2,x<0}\end{array}\right.$,g(x)=3x-1则使不等式f(g(x))≥0成立的区间为( )
A. | [1,+∞) | B. | [1n3,+∞) | C. | [1,ln3] | D. | [-1,ln3) |