题目内容
【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA= acosB. (Ⅰ)求角B的大小;
(Ⅱ)若b=3,sinC=2sinA,求△ABC的面积.
【答案】解:(Ⅰ)在△ABC中,∵bsinA= acosB, ∴由正弦定理可得 sinBsinA= sinAcosB.
∵sinA≠0,∴sinB= cosB,∴tanB= ,∴B= .
(Ⅱ)∵sinC=2sinA,∴c=2a,
由余弦定理b2=a2+c2﹣2accosB,即9=a2+4a2﹣2a2acos ,
解得a= ,c=2a=2 .
故△ABC的面积为 acsinB=
【解析】(Ⅰ)在△ABC中,由 bsinA= acosB,利用正弦定理求得tanB的值,可得B的值.(Ⅱ)由条件利用正弦定理得c=2a,再由余弦定理b2=a2+c2﹣2accosB,求得a的值,可得c=2a的值,根据 △ABC的面积为 acsinB,计算求得结果.
【考点精析】认真审题,首先需要了解正弦定理的定义(正弦定理:).
练习册系列答案
相关题目