题目内容
3.4名优秀学生全部保送到3所学校去,每所学校至少去一名学生,则不同的保送方案有( )A. | 12种 | B. | 72种 | C. | 18种 | D. | 36种 |
分析 根据题意,分2步进行分析:①、将4名学生分为3组,一组2人、其余2组每组1人,②、将分好的3组进行全排列,对应3所学校,分别求出每一步的情况数目,由分步计数原理计算可得答案.
解答 解:根据题意,分2步进行分析:
①、将4名学生分为3组,一组2人、其余2组每组1人,有C42=6种情况,
②、将分好的3组进行全排列,对应3所学校,有A33=6种情况,
则不同的保送方案有6×6=36种,
故选:D.
点评 本题考查分步计数原理的运用,对于此类问题一般要先分组、再对应,关键是审清题意,明确分组的方法.
练习册系列答案
相关题目
13.sin45°cos15°-cos135°sin165°=( )
A. | -$\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
14.函数f(x)=$\frac{1}{\sqrt{lo{g}_{\frac{1}{2}}(2x-3)}}$的定义域为( )
A. | ($\frac{3}{2}$,+∞) | B. | (2,+∞) | C. | (0,$\frac{3}{2}$) | D. | ($\frac{3}{2}$,2) |
11.已知f(x)是定义在R上的奇函数,且在(-∞,0]上是增函数,若f(a-2)>-f(a),则实数a的取值范围是( )
A. | (-∞,0) | B. | (0,+∞) | C. | (-∞,1) | D. | (1,+∞) |
18.从某校高三年级抽查100名男同学,如果以身高达到170cm作为达标的标准,对抽取的100名男同学,得到以下列联表:
(1)请完成上表;
(2)能否在犯错误的概率不超过0.15的前提下认为体育锻炼与身高达标有关系(K2的观察值精确到0.001)?
参考:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)^{2}}$
身高达标 | 身高不达标 | 总计 | |
积极参加体育锻炼 | 40 | 75 | |
不 积极参加体育锻炼 | 10 | ||
总计 | 100 |
(2)能否在犯错误的概率不超过0.15的前提下认为体育锻炼与身高达标有关系(K2的观察值精确到0.001)?
参考:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)^{2}}$
P(k2≥k0) | 0.15 | 0.10 |
k0 | 2.072 | 2.706 |
8.从1,2,4,8这4个数中一次随机地取两个数,则所取两个数的乘积为8的概率是( )
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
12.已知集合M={x|x2-2x-3≤0},N={x|-2<x<2},则M∩N=( )
A. | ∅ | B. | {x|-1≤x<2} | C. | {x|-2≤x<-1} | D. | {x|2≤x<3} |
13.已知命题p:“?x∈R,ex>0”,命题q:“?x0∈R,x0-2>x02”,则( )
A. | 命题p∨q是假命题 | B. | 命题p∧q是真命题 | ||
C. | 命题p∧(¬q)是真命题 | D. | 命题p∨(¬q)是假命题 |