题目内容

【题目】已知函数,,是实数.

)若处取得极值,的值;

)若在区间为增函数,的取值范围;

)在(Ⅱ)的条件下,函数有三个零点,的取值范围.

【答案】;(;(

【解析】试题()由极值的定义知,由此可求得值;()题意说明

在区间恒成立, 上恒成立,由不等式性质可得的范围;()函数是三次函数,它有三个零点,则此函数在上必定有在一个极大值也有一个极小值,且极大值大于0.极小值小于0,利用导数确定出极值点,再解相应不等式组即可.

试题解析:(

处取得极值,,

所以(适合题意)

,因为在区间为增函数,

所以在区间恒成立,

所以恒成立,恒成立

由于,.的取值范围是

,

,

,,上是增函数,显然不合题意

,的变化情况如下表:

要使有三个零点,

故需,

解得.所以的取值范围是

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网