题目内容
【题目】如图,在四棱锥中,底面是边长为2的正方形,,分别为,的中点,平面平面,且.
(1)求证:平面;
(2)求三棱锥的体积.
【答案】(1)详见解析,(2)
【解析】试题分析: (1)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行的寻找与论证,往往需要利用平几知识,如本题分别取中点,与构成一个平行四边形,再利用平行四边形性质进行求证;也可连接,利用三角形中位线性质求证;(2)求三棱锥体积,关键求锥的高,而求锥的高需利用线面垂直关系进行寻找.证明或寻找线面垂直,可结合条件,利用面面垂直性质定理得到边上中线就是平面的垂线,最后根据等体积法及椎体体积公式求体积.
试题解析:(1)证明:连接,则是的中点,为的中点,
故在中,,
且平面,平面,
∴平面.
(2)取的中点,连接,
∵,
∴,
又平面平面,平面平面,
∴平面,
∴.
【题目】为了研究家用轿车在高速公路上的车速情况,交通部门随机对50名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在30名男性驾驶员中,平均车速超过的有20人,不超过的有10人.在20名女性驾驶员中,平均车速超过的有5人,不超过的有15人.
(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过的人与性别有关;
平均车速超过 人数 | 平均车速不超过 人数 | 合计 | |
男性驾驶员人数 | |||
女性驾驶员人数 | |||
合计 |
(Ⅱ )以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为女性且车速不超过的车辆数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.
参考公式: ,其中.
参考数据:
0.150 | 0.100 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】某车间20名工人年龄数据如下表:
年龄(岁) | 19 | 24 | 26 | 30 | 34 | 35 | 40 | 合计 |
工人数(人) | 1 | 3 | 3 | 5 | 4 | 3 | 1 | 20 |
(1)求这20名工人年龄的众数与平均数;
(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3)从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率.