题目内容
【题目】已知椭圆的右焦点为F.
(1)求点F的坐标和椭圆C的离心率;
(2)直线过点F,且与椭圆C交于P,Q两点,如果点P关于x轴的对称点为,判断直线是否经过x轴上的定点,如果经过,求出该定点坐标;如果不经过,说明理由.
【答案】(1)焦点,离心率(2)是过x轴上的定点;定点
【解析】
(1)由椭圆的标准方程即可得出;
(2)直线过点F,可得,代入椭圆的标准方程可得:.(依题意).设,,可得根与系数的关系,点P关于x轴的对称点为,则.可得直线的方程可以为,令,,把根与系数的关系代入化简即可得出.
(1)椭圆,
,解得,
焦点,离心率.
(2)直线过点F,
,.
由,得.(依题意).
设,,
则,.
点P关于x轴的对称点为,则.
直线的方程可以设为,
令,
.
直线过x轴上定点.
练习册系列答案
相关题目
【题目】“微信运动”已成为当下热门的运动方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:
步数 性别 | 0-2000 | 2001-5000 | 5001-8000 | 8001-10000 | >10000 |
男 | 1 | 2 | 3 | 6 | 8 |
女 | 0 | 2 | 10 | 6 | 2 |
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
附:
(1)已知某人一天的走路步数超过8000步被系统评定为“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?
积极型 | 懈怠型 | 总计 | |
男 | |||
女 | |||
总计 |
(2)若小王以这40位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选2人,其中每日走路不超过5000步的有人,超过10000步的有人,设,求的分布列及数学期望.