题目内容

【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,且asinB=bsin(A+).

(1)求A;

(2)若b,a,c成等差数列,△ABC的面积为2,求a.

【答案】(1) ; (2).

【解析】

(1)由正弦定理化简已知可得sinA=sin(A+),结合范围A(0,π),即可计算求解A的值

(2)利用等差数列的性质可得b+c=,利用三角形面积公式可求bc的值,进而根据余弦定理即可解得a的值.

(1)∵asinB=bsin(A+).

由正弦定理可得:sinAsinB=sinBsin(A+).

∵sinB≠0,

∴sinA=sin(A+).

∵A∈(0,π),可得:A+A+=π,

∴A=

(2)∵b,a,c成等差数列,

∴b+c=

∵△ABC的面积为2,可得:S△ABC=bcsinA=2

=2,解得bc=8,

由余弦定理可得:a2=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣2bccos

=(b+c)2﹣3bc=(a)2﹣24,

解得:a=2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网