题目内容
设函数![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633595899.png)
(1)若关于x的不等式
在
有实数解,求实数m的取值范围;
(2)设
,若关于x的方程
至少有一个解,求p的最小值.
(3)证明不等式:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633689610.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633595899.png)
(1)若关于x的不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633611662.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633626423.png)
(2)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633642716.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633657537.png)
(3)证明不等式:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633673983.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633689610.png)
(1)
(2)p的最小值为0(3)见解析
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633704617.png)
试题分析:
(1)存在性问题,只需要
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633720735.png)
(2) p的最小值为函数g(x)的最小值,利用导数求函数的最小值即可(即求导,求单调性,求极值9与端点值比较得出最值).
(3)利用第二问结果可以得到与不等式有关的恒等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633751595.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633782453.png)
试题解析:
(1)依题意得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633798755.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240426338291296.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633845447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633860537.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633845447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633892454.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633923541.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633845447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633626423.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633970974.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633985574.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633642716.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042634110890.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042634126996.png)
显然,函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042634157444.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633892454.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633923541.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042634157444.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042634219490.png)
所以,要使方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633657537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042634250438.png)
(3)由(2)可知:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042634282964.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633860537.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633751595.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042634500803.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042634516568.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042634531682.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042634562604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042634578762.png)
所以,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042634594504.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042634625663.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042634640647.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042634578762.png)
将以上n个等式相加即可得到:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042633673983.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目