题目内容
设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)> 0,且g(-3)=0,则不等式f(x)g(x)<0的解集是( )
A.(-3,0)∪(3,+∞) | B.(-3,0)∪(0,3) |
C.(-∞,-3)∪(3,+∞) | D.(-∞,-3)∪(0,3) |
D
试题分析:因为,则由已知可得时,,令,则函数在上单调递增。因为分别是在上的奇函数和偶函数,所以在上是奇函数。则图像关于原点对称,且在上也单调递增。因为,且为偶函数则,即。综上可得的解集为。故D正确。
练习册系列答案
相关题目