题目内容
已知函数f(x)=ax2+ln(x+1).
(1)当a=
时,求函数f(x)的单调区间;
(2)当
时,函数y=f(x)图像上的点都在
所表示的平面区域内,求实数a的取值范围;
(3)求证:
(其中
,e是自然数对数的底数)
(1)当a=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848489327.png)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848504630.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848535768.png)
(3)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240428485512127.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848551531.png)
(1)
的单调递增区间为
,单调递减区间为
(2)
(3)见解析
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848567429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848582381.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848598445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848613446.png)
试题分析:
(1)函数f(x)是二次与对数的结合,求单调性可以利用导数,以此先求定义域,求导,求导函数大于0与小于0分别求出单调递增与单调递减区间.
(2)要使得函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848567429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848645748.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848660559.png)
不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848676522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848691725.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848691476.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848660559.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848691476.png)
(3)考虑把不等式两边
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240428487382118.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240428487542241.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848769311.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240428487851025.png)
试题解析:
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848801419.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848816849.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848847359.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240428488631157.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848847359.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848879537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848894408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848910547.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848925347.png)
故函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848567429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848582381.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848598445.png)
(2)因函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848567429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848645748.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848660559.png)
不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848676522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849050758.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849050797.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849066402.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849081648.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849097787.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849113747.png)
(ⅰ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849128359.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849144622.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849159381.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849175550.png)
函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849191426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849191470.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849284644.png)
(ⅱ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849300381.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240428493151024.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848660559.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849347535.png)
①
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849362544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849393461.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849191470.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849409532.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849191426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849191470.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849191426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849487447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849503421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849518568.png)
②若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849534556.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849549562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849191426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849581605.png)
在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849596636.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849191426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849487447.png)
(ⅲ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849643381.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849659947.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848660559.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849690688.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849175550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849191426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849487447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849284644.png)
综上所述,实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849768283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042848613446.png)
(3)据(2)知当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849128359.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849815572.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849487447.png)
(或另证
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849815572.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849846456.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240428487851025.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240428498771866.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240428499082001.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240428499241320.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240428499241406.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849939744.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042849955169.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240428499712148.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目