题目内容
已知函数f(x)= (b<0)的值域是[1,3],
(1)求b、c的值;
(2)判断函数F(x)=lgf(x),当x∈[-1,1]时的单调性,并证明你的结论;
(3)若t∈R,求证:lg≤F(|t-|-|t+|)≤lg.
(1)求b、c的值;
(2)判断函数F(x)=lgf(x),当x∈[-1,1]时的单调性,并证明你的结论;
(3)若t∈R,求证:lg≤F(|t-|-|t+|)≤lg.
(1) c=2,b=-2 (2)见解析 (3) 见解析
(1)由已知中函数的值域是[1,3],利用判别式法,我们可以构造出一个关于b,c的方程组,解方程组即可得到b,c的值;
(2)由(1)的结论我们易给出函数F(x)=lgf(x)的解析式,利用作差法,我们可以判断出F(x1)与F(x2)的大小,结合函数单调性的定义,我们易判断出函数F(x)=lgf(x)在[-1,1]上的单调性.
(3)根据函数的单调性得到不等式的证明,。
(1)解:设y=,则(y-2)x2-bx+y-c="0" ①
∵x∈R,∴①的判别式Δ≥0,即b2-4(y-2)(y-c)≥0,
即4y2-4(2+c)y+8c-b2≤0 ②
由条件知,不等式②的解集是[1,3]
∴1,3是方程4y2-4(2+c)y+8c-b2=0的两根
∴c=2,b=-2,b=2(舍)
(2)任取x1,x2∈[-1,1],且x2>x1,则x2-x1>0,且
(x2-x1)(1-x1x2)>0,
∴f(x2)-f(x1)=->0,
∴f(x2)>f(x1),lgf(x2)>lgf(x1),即F(x2)>F(x1)
∴F(x)为减函数.
即-≤u≤,根据F(x)的单调性知
F(-)≤F(u)≤F(),∴lg≤F(|t-|-|t+|)≤lg对任意实数t成立.
(2)由(1)的结论我们易给出函数F(x)=lgf(x)的解析式,利用作差法,我们可以判断出F(x1)与F(x2)的大小,结合函数单调性的定义,我们易判断出函数F(x)=lgf(x)在[-1,1]上的单调性.
(3)根据函数的单调性得到不等式的证明,。
(1)解:设y=,则(y-2)x2-bx+y-c="0" ①
∵x∈R,∴①的判别式Δ≥0,即b2-4(y-2)(y-c)≥0,
即4y2-4(2+c)y+8c-b2≤0 ②
由条件知,不等式②的解集是[1,3]
∴1,3是方程4y2-4(2+c)y+8c-b2=0的两根
∴c=2,b=-2,b=2(舍)
(2)任取x1,x2∈[-1,1],且x2>x1,则x2-x1>0,且
(x2-x1)(1-x1x2)>0,
∴f(x2)-f(x1)=->0,
∴f(x2)>f(x1),lgf(x2)>lgf(x1),即F(x2)>F(x1)
∴F(x)为减函数.
即-≤u≤,根据F(x)的单调性知
F(-)≤F(u)≤F(),∴lg≤F(|t-|-|t+|)≤lg对任意实数t成立.
练习册系列答案
相关题目