题目内容
【题目】从某校高一年级学生中随机抽取了20名学生,将他们的数学检测成绩(分)分成六段(满分100分,成绩均为不低于40分的整数):,,...,后,得到如图所示的频率分布直方图.
(Ⅰ)求图中实数的值;
(Ⅱ)若该校高一年级共有学生600名,试根据以上数据,估计该校高一年级数学检测成绩不低于80分的人数.
【答案】(Ⅰ);(Ⅱ)210.
【解析】
(Ⅰ)由等比数列性质及频率分布直方图,列出方程,能求出.
(Ⅱ)利用频率分布直方图能求出成绩不低于80分的人数.
解:(Ⅰ)因为图中所有小矩形的面积之和等于1,
所以,
解得.
(Ⅱ)根据频率分布直方图,成绩不低于80分的频率为
.
由于该校高一年级共有学生600名,利用样本估计总体的思想,可估计该校高一年级数学检测成绩不低于80分的人数为.
练习册系列答案
相关题目
【题目】某超市随机选取位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
甲 | 乙 | 丙 | 丁 | |
√ | × | √ | √ | |
× | √ | × | √ | |
√ | √ | √ | × | |
√ | × | √ | × | |
85 | √ | × | × | × |
× | √ | × | × |
(Ⅰ)估计顾客同时购买乙和丙的概率;
(Ⅱ)估计顾客在甲、乙、丙、丁中同时购买中商品的概率;
(Ⅲ)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?