题目内容

【题目】将一颗骰子先后抛掷2次,观察向上的点数,事件A:“两数之和为8”,事件B:“两数之和是3的倍数”,事件C:“两个数均为偶数”.

(I)写出该试验的基本事件,并求事件A发生的概率;

(II)求事件B发生的概率;

(III)事件A与事件C至少有一个发生的概率.

【答案】(I)||=36,P(A)= (II)(III)

【解析】

I)用列举法列举出所有的基本事件,利用古典概型概率计算公式求得事件发生的概率.II)根据(I)列举的基本事件,利用古典概型概率计算公式求得事件发生的概率.III)根据(I)列举的基本事件,利用古典概型概率计算公式求得事件与事件至少有一个发生的概率.

I)所有可能的基本事件为:

.

其中“两数之和为”的有种,故.

(II)由(I)得“两数之和是的倍数”的有种,故概率为.

(III)由(I) “两个数均为偶数”的有种,“两数之和为”的有种,重复的有 三种,故事件与事件至少有一个发生的有种,概率为.

练习册系列答案
相关题目

【题目】山西省2021年高考将实施新的高考改革方案.考生的高考总成绩将由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分.其中,统一高考科目为语文、数学、外语,自主选择的3门普通高中学业水平等级考试科目是从物理、化学、生物、历史、政治、地理6科中选择3门作为选考科目,语、数、外三科各占150分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分。根据高考综合改革方案,将每门等级考试科目中考生的原始成绩从高到低分为共8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.等级考试科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到八个分数区间,得到考生的等级成绩。举例说明1:甲同学化学学科原始分为65分,化学学科 等级的原始分分布区间为,则该同学化学学科的原始成绩属等级,而等级的转换分区间为那么,甲同学化学学科的转换分为:设甲同学化学科的转换等级分为 ,求得.四舍五入后甲同学化学学科赋分成绩为66分。举例说明2:乙同学化学学科原始分为69分,化学学科等级的原始分分布区间为则该同学化学学科的原始成绩属等级.而等级的转换分区间为这时不用公式,乙同学化学学科赋分成绩直接取下端点70分。现有复兴中学高一年级共3000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布。且等级为 所在原始分分布区间为,且等级为所在原始分分布区间为,且等级为所在原始分分布区间为

(1)若小明同学在这次考试中物理原始分为84分,小红同学在这次考试中物理原始分为72分,求小明和小红的物理学科赋分成绩;(精确到整数).

(2)若以复兴中学此次考试频率为依据,在学校随机抽取4人,记这4人中物理原始成绩在区间 的人数,求的数学期望和方差.(精确到小数点后三位数).

附:若随机变量满足正态分布,给出以下数据

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网