题目内容
4.数列{an}的前n项和为Sn,且Sn与2的算术平均数恰好是an,(1)求数列{an}的通项公式;
(2)设bn=log2a2n-1,且$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$<m2-m-$\frac{3}{2}$对一切n∈N*均成立,求实数m的取值范围.
分析 (1)利用an+1=Sn+1-Sn整理得an+1=2an,进而可得结论;
(2)通过an=2n、裂项可知$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{2}•$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),并项相加可知$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{2}•$(1-$\frac{1}{2n+1}$),进而可得结论.
解答 解:(1)∵Sn与2的算术平均数恰好是an,
∴Sn=2an-2,an≠0,
∴Sn+1=2an+1-2,
∴an+1=Sn+1-Sn=2an+1-2an,
即an+1=2an,
又∵a1=2a1-2,即a1=2,
∴an=2•2n-1=2n;
(2)∵an=2n,
∴bn=log2a2n-1=log222n-1=2n-1,
∴$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{2n-1}$•$\frac{1}{2n+1}$=$\frac{1}{2}•$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$
=$\frac{1}{2}•$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{2}•$(1-$\frac{1}{2n+1}$),
∵$\frac{1}{2}•$(1-$\frac{1}{2n+1}$)随着n的增大而增大,且越来越接近于$\frac{1}{2}$,
∴m2-m-$\frac{3}{2}$≥$\frac{1}{2}$,
整理得:(m-2)(m+1)≥0,
解得m≥2或m≤-1,
∴实数m的取值范围为:(-∞,-1]∪[2,+∞).
点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.
A. | (4-2$\sqrt{5}$,4+2$\sqrt{5}$) | B. | (4-2$\sqrt{5}$,0)∪(0,4+2$\sqrt{5}$) | C. | (-4-2$\sqrt{5}$,-4+2$\sqrt{5}$) | D. | (-4-2$\sqrt{5}$,0)∪(0,-4+2$\sqrt{5}$) |
A. | (9,17) | B. | (10,18) | C. | (11,19) | D. | (12,20) |
A. | an=2n+1 | B. | an=2n | C. | an=2n-1 | D. | an=2n+3 |