题目内容
设是公比为q的等比数列. (Ⅰ) 推导的前n项和公式; (Ⅱ) 设q≠1, 证明数列不是等比数列.
(Ⅰ) (Ⅱ)见解析
解析
已知数列的通项公式为,数列的前项和为,且满足.(1)求的通项公式;(2)在中是否存在使得是中的项,若存在,请写出满足题意的其中一项;若不存在,请说明理由.
数列的前项和为,且是和的等差中项,等差数列满足,.(1)求数列、的通项公式;(2)设,数列的前项和为,证明:.
四川省广元市2008年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2008年为累计的第一年)将首次不少于4 750万平方米?(2)到2013年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%吗?为什么(参考数据:1.084≈1.36,1.085≈1.47,1.086≈1.59)
设各项均为正数的数列的前项和为,满足且构成等比数列.(1) 证明:;(2) 求数列的通项公式;(3) 证明:对一切正整数,有.
设数列是等差数列,是各项均为正数的等比数列,且(1)求数列的通项公式;(2)若为数列的前项和,求.
设数列的前项和为.已知,,.(Ⅰ) 求的值;(Ⅱ) 求数列的通项公式;(Ⅲ) 证明:对一切正整数,有.
在等比数列中,已知,公比,等差数列满足.(Ⅰ)求数列与的通项公式;(Ⅱ)记,求数列的前n项和.
已知数列满足:(其中常数).(1)求数列的通项公式;(2)当时,数列中是否存在不同的三项组成一个等比数列;若存在,求出满足条件的三项,若不存在,说明理由。