题目内容
设数列的前项和为.已知,,.(Ⅰ) 求的值;(Ⅱ) 求数列的通项公式;(Ⅲ) 证明:对一切正整数,有.
(Ⅰ) 4(Ⅱ) (Ⅲ)见解析
解析
已知等差数列的前项和为,且.(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足,求数列的前项和.
已知各项均不相等的等差数列的前三项和为18,是一个与无关的常数,若恰为等比数列的前三项,(1)求的通项公式.(2)记数列,的前三项和为,求证:
设是公比为q的等比数列. (Ⅰ) 推导的前n项和公式; (Ⅱ) 设q≠1, 证明数列不是等比数列.
数列{}的前n项和为,,.(1)设,证明:数列是等比数列;(2)求数列的前项和;
设是各项都为正数的等比数列, 是等差数列,且,(Ⅰ)求数列,的通项公式;(Ⅱ)设数列的前项和为,求数列的前项和.
设等差数列的公差,等比数列公比为,且,,(1)求等比数列的公比的值;(2)将数列,中的公共项按由小到大的顺序排列组成一个新的数列,是否存在正整数(其中)使得和都构成等差数列?若存在,求出一组的值;若不存在,请说明理由.
在等差数列中,.(1)求数列的通项公式;(2)若数列满足(),则是否存在这样的实数使得为等比数列;(3)数列满足为数列的前n项和,求.
已知,点在函数的图象上,其中(1)证明:数列是等比数列,并求数列的通项公式;(2)记,求数列的前项和.