题目内容

【题目】已知,函数

(1)当时,求函数上的最值;

(2)若函数上单调递增,求的取值范围.

【答案】(1)见解析;(2)a .

【解析】

(1) 当a=2时,求得函数的导数,利用导数得出函数的单调性,即可求解函数的最值;

(2)根据函数f(x)在(-1,1)上单调递增,转化为在(-1,1)上恒成立,再利用分离参数,转化为函数的最值问题,即可求解.

(1) 当a=2时,f(x)=(-x2+2x)ex,f′(x)=(-x2+2)ex.

令f′(x)=0,则x=-或x=

当x变化时,f′(x),f(x)的变化情况如下表:

x

0

(0, )

(,2)

2

f′(x)

+

0

-

f(x)

f(0)=0

极大值f()

f(2)=0

所以,f(x)max= f()=(-2+2),f(x)min= f(0)=0.

(2)因为函数f(x)在(-1,1)上单调递增,所以f′(x)≥0在(-1,1)上恒成立.

又f′(x)=[-x2+(a-2)x+a]ex,即[-x2+(a-2)x+a]ex≥0,注意到ex>0,

因此-x2+(a-2)x+a≥0在(-1,1)上恒成立,

也就是a≥=x+1-在(-1,1)上恒成立.

设y=x+1-,则y′=1+>0,

即y=x+1-在(-1,1)上单调递增,

则y<1+1-,故a≥.

练习册系列答案
相关题目

【题目】已知函数,且).

(Ⅰ)求函数的单调区间;

(Ⅱ)求函数上的最大值.

【答案】(Ⅰ)的单调增区间为,单调减区间为.(Ⅱ)当时, ;当时, .

【解析】试题分析】(I)利用的二阶导数来研究求得函数的单调区间.(II) 由(Ⅰ)得上单调递减,在上单调递增,由此可知.利用导数和对分类讨论求得函数在不同取值时的最大值.

试题解析】

(Ⅰ)

,则.

,∴上单调递增,

从而得上单调递增,又∵

∴当时, ,当时,

因此, 的单调增区间为,单调减区间为.

(Ⅱ)由(Ⅰ)得上单调递减,在上单调递增,

由此可知.

.

.

∵当时, ,∴上单调递增.

又∵,∴当时, ;当时, .

①当时, ,即,这时,

②当时, ,即,这时, .

综上, 上的最大值为:当时,

时, .

[点睛]本小题主要考查函数的单调性,考查利用导数求最大值. 与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图象与轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.

型】解答
束】
22

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,圆的普通方程为. 在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为 .

(Ⅰ) 写出圆 的参数方程和直线的直角坐标方程;

( Ⅱ ) 设直线轴和轴的交点分别为为圆上的任意一点,求的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网