题目内容

【题目】在正四面体P﹣ABC中,点M是棱PC的中点,点N是线段AB上一动点,且 ,设异面直线 NM 与 AC 所成角为α,当 时,则cosα的取值范围是

【答案】[ , ]
【解析】解:设P到平面ABC的射影为点O,取BC中点D,

以O为原点,在平面ABC中,以过O作DB的平行线为x轴,

以OD为y轴,以OP为z轴,建立空间直角坐标系,如图,

设正四面体P﹣ABC的棱长为4

则A(0,﹣4,0),B(2 ,2,0),C(﹣2 ,2,2 ),P(0,0,4 ),M(﹣ ,1,2 ),

,得N( ),

=(﹣ ,5﹣6λ,2 ), =(﹣2 ,6,0),

∵异面直线 NM 与 AC 所成角为α,

∴cosα= = ,设3﹣2λ=t,则

∴cosα= =

∴cosα的取值范围是[ ].

故答案为:[ ].

设P到平面ABC的射影为点O,取BC中点D,以O为原点,在平面ABC中,以过O作DB的平行线为x轴,以OD为y轴,以OP为z轴,建立空间直角坐标系,利用向量法能求出cosα的取值范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网