题目内容
【题目】某电视台举行电视奥运知识大奖赛,比赛分初赛和决赛两部分.为了增加节目的趣味性,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰.已知选手甲答题的正确率为 . (Ⅰ)求选手甲可进入决赛的概率;
(Ⅱ)设选手甲在初赛中答题的个数为ξ,试写出ξ的分布列,并求ξ的数学期望.
【答案】解:(Ⅰ)选手甲答3道题可进入决赛的概率为 ;
选手甲答4道题可进入决赛的概率为 ;
选手甲答5道题可进入决赛的概率为 ;
∴选手甲可进入决赛的概率 + + = .
(Ⅱ)依题意,ξ的可能取值为3,4,5.则有 , , ,
因此,有
ξ | 3 | 4 | 5 |
p |
|
|
|
∴ .
【解析】(Ⅰ)由于答对3题者直接进入决赛,故可分为三类:一类是三题全对;一类是答4题,前3题错一题,第4题答对;一类是答5题,前4题错两题,第5题答对,故可求求选手甲可进入决赛的概率;(Ⅱ)依题意,ξ的可能取值为3,4,5.利用独立重复试验的概率公式分别求出相应的概率,从而得出ξ的分布列,进而可求概率.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.
练习册系列答案
相关题目