题目内容
【题目】在直角坐标系中,以原点为极点, 轴的正半轴为极轴,建立极坐标系,两坐标系中取相同的单位长度,已知曲线的方程为,点.
(1)求曲线的直角坐标方程和点的直角坐标;
(2)设为曲线上一动点,以为对角线的矩形的一边平行于极轴,求矩形周长的最小值及此时点的直角坐标.
【答案】(1)+点的直角坐标为;(2)周长的最小值为 此时点的直角坐标为 .
【解析】试题分析:
第一问考查定义,极直互化,第二问要明白E,F,两点可以不在曲线上, 长度为B,两点横坐标之差,AE长度为两点纵坐标之差,分别为长方形的长和宽.最后利用三角函数求出范围.
.解:(1)由, ,
∴曲线的直角坐标方程为,点的直角坐标为.
(2)曲线的参数方程为(为参数, ),∴设,
依题意可得, ,
矩形的周长
当时,周长的最小值为,此时点的直角坐标为.
练习册系列答案
相关题目