题目内容

【题目】对于函数f(x),若a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”,已知函数f(x)= 是“可构造三角形函数”,则实数t的取值范围是( )
A.[0,+∞)
B.[0,1]
C.[1,2]
D.

【答案】D
【解析】解:由题意可得f(a)+f(b)>f(c)对于a,b,c∈R都恒成立,
由于f(x)= =1+
①当t﹣1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,
满足条件.
②当t﹣1>0,f(x)在R上是减函数,1<f(a)<1+t﹣1=t,
同理1<f(b)<t,1<f(c)<t,
由f(a)+f(b)>f(c),可得 2≥t,解得1<t≤2.
③当t﹣1<0,f(x)在R上是增函数,t<f(a)<1,
同理t<f(b)<1,t<f(c)<1,
由f(a)+f(b)>f(c),可得 2t≥1,解得1>t≥
综上可得, ≤t≤2,
故实数t的取值范围是[ ,2],
故选D.
【考点精析】通过灵活运用函数的定义域及其求法,掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网