题目内容
【题目】已知.
(1)若,求函数的单调区间;
(2)若不等式恒成立,求实数的取值范围.
【答案】(1)答案不唯一,具体见解析(2)
【解析】
(1)分类讨论,利用导数的正负,可得函数的单调区间.
(2)分离出参数后,转化为函数的最值问题解决,注意函数定义域.
(1)
由得或
①当时,由,得.
由,得或
此时的单调递减区间为,单调递增区间为和.
②当时,由,得
由,得或
此时的单调递减区间为,单调递增区间为和
综上:当时,单调递减区间为,单调递增区间为和
当时,的单调递减区间为,单调递增区间为和.
(2)依题意,不等式恒成立
等价于在上恒成立,
可得,在上恒成立,
设,则
令,得,(舍)
当时,;当时,
当变化时,,变化情况如下表:
1 | |||
0 | |||
单调递增 | 单调递减 |
∴当时,取得最大值,,∴.
∴的取值范围是.
练习册系列答案
相关题目
【题目】从某大学中随机选取7名女大学生,其身高x(单位:cm)和体重y(单位:kg)数据如下表:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
身高x | 163 | 164 | 165 | 166 | 167 | 168 | 169 |
体重y | 52 | 52 | 53 | 55 | 54 | 56 | 56 |
(1)求y关于x的回归方程;
(2)利用(1)中的回归方程,分析这7名女大学生的身高和体重的变化,并预报一名身高为172cm的女大学生的体重.