题目内容

【题目】在△ABC中,已知B=45°,D是BC上一点,AD=5,AC=7,DC=3,求AB的长.

【答案】解:法一:在△ADC中,由余弦定理得: ∵∠ADC∈(0,π),∴∠ADC=120°,
∴∠ADB=180°﹣∠ADC=60°
在△ABD中,由正弦定理得:
法二:在△ADC中,由余弦定理得
∵∠ACD∈(0,π),∴
在△ABC中,由正弦定理得:
故答案为:
【解析】法一:先在△ADC中用余弦定理求出∠ADC的余弦值,进而求出∠ADC,再根据互补求出∠ADB,然后在△ABD中用正弦定理就可求出AB的长; 法二:先在△ADC中用余弦定理求出∠ACD的余弦值,在根据同角三角函数关系求出∠ACD的正弦,然后在△ABC中用正弦定理就可求出AB的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网