题目内容
【题目】已知数列{an}满足a1=﹣2,an+1=2an+4.
(1)证明数列{an+4}是等比数列并求出{an}通项公式;
(2)若 ,求数列{bn}的前n项和Sn .
【答案】
(1)证明:∵a1=﹣2,∴a1+4=2,
∵an+1=2an+4,∴an+1+4=2an+8=2(an+4),
∴ ,
∴{an+4}是以2为首项,2为公比的等比数列,
由上知 ,∴ .
(2)解:
∴ ,①
,②
②﹣①得:
=
=2+2n+1﹣2﹣(n+1)×2n+1
=﹣n2n+1.
【解析】(1)利用已知条件转化求解数列{an+4}是等比数列,然后求出{an}通项公式.(2)化简数列通项公式bn , 利用错位相减法求和求解即可.
【考点精析】利用数列的前n项和和数列的通项公式对题目进行判断即可得到答案,需要熟知数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
练习册系列答案
相关题目