题目内容
乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.
(1)求甲以4比1获胜的概率;
(2)求乙获胜且比赛局数多于5局的概率;
(3)求比赛局数的分布列.
(1);(2);(3)见解析.
解析试题分析:(1)先记“甲以4比1获胜”为事件A,由题意甲乙一共比赛5局,则甲前4局比赛中有且只有3局获胜,第5局比赛一定获胜,易得甲以4比1获胜的概率为P(A)=()3·()4-3·=;(2)同(1)中道理,“乙获胜且比赛局数多于5局”分两种情况:一是比赛6局,二是比赛7局,分别计算出概率再相加即得结论;(3)比赛的局数的可能值为4、5、6、7,分别计算取不同值时的概率,列表得分布列.
试题解析:(1)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是. 1分
记“甲以4比1获胜”为事件A,则P(A)=()3·()4-3·=. 3分
(2)记“乙获胜且比赛局数多于5局”为事件B.
因为乙以4比2获胜的概率为P1=··=,
乙以4比3获胜的概率为P2=··=,
所以P(B)=P1+P2=. 7分
(3)设比赛的局数位X,则X的可能取值为4,5,6,7. 8分
,,
,, 11分
比赛局数的分布列为
考点:1、概率;2、概率分布列.X 4 5 6 7 P
练习册系列答案
相关题目
为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取12件和5件,测量产品中微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:
编号 | 1 | 2 | 3 | 4 | 5 |
x | 169 | 178 | 166 | 175 | 180 |
y | 75 | 80 | 77 | 76 | 81 |
(2)当产品中的微量元素x,y满足x≥175且y≥75,该产品为优等品,
①用上述样本数据估计乙厂生产的优等品的数量;
②从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及其期望.