题目内容
按照新课程的要求, 高中学生在每学期都要至少参加一次社会实践活动(以下简称活动). 该校高2010级一班50名学生在上学期参加活动的次数统计如图所示.
(I)求该班学生参加活动的人均次数;(II)从该班中任意选两名学生,求他们参加活动次数恰好相等的概率.
(III)从该班中任选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望.
(1);(2);(3).
解析试题分析:(1)根据图形能够知道参加活动1次、2次和3次的学生人数,人均次数的计算需要注意参加2次活动的要乘以2,如;(2)“参加活动次数恰好相等”的事件有,任选两名学生有,则最后;(3)由题意该班中任选两名学生的情况有“这两人中一人参加1次活动,另一人参加2次活动”,“这两人中一人参加2次活动,另一人参加3次活动”,“这两人中一人参加1次活动,另一人参加3次活动”,的取值有0,1,2,其概率分别为,,,进而可以求出.
试题解析:由图可知,参加活动1次、2次和3次的学生人数分别为5、25和20.
(I)该班学生参加活动的人均次数为=.
(II)从该班中任选两名学生,他们参加活动次数恰好相等的概率为
.
(III)从该班中任选两名学生,记“这两人中一人参加1次活动,另一人参加2次活动”为事件,“这两人中一人参加2次活动,另一人参加3次活动”为事件,“这两人中一人参加1次活动,另一人参加3次活动”为事件.易知
;
.
的分布列:
的数学期望:.0 1 2
考点:1.平均数的求解,2.古典概型,期望.
(12分)某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生
(I)分别求出按程序框图正确编程运行时输出y的值为i的概率pi(i=1,2,3);
(II)甲乙两同学依据自己对程序框图的理解,各自编程写出程序重复运行n次后,统计记录输出y的值为i(i=1,2,3)的频数,以下是甲乙所作频数统计表的部分数据.
甲的频数统计图(部分)
运行次数n | 输出y的值为1的频数 | 输出y的值为2的频数 | 输出y的值为3的频数 |
30 | 14 | 6 | 10 |
… | … | … | … |
2100 | 1027 | 376 | 697 |
运行次数n | 输出y的值为1的频数 | 输出y的值为2的频数 | 输出y的值为3的频数 |
30 | 12 | 11 | 7 |
… | … | … | … |
2100 | 1051 | 696 | 353 |
(III)将按程序摆图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.
某研究性学习小组对昼夜温差与某种子发芽数的关系进行研究,他们分别记录了四天中每天昼夜温差与每天100粒种子浸泡后的发芽数,得到如下资料:
时间 | 第一天 | 第二天 | 第三天 | 第四天 |
温差(℃) | 9 | 10 | 8 | 11 |
发芽数(粒) | 33 | 39 | 26 | 46 |
(2)若研究的一个项目在这四天中任选2天的种子发芽数来进行,记发芽的种子数分别为m,n(m<n),则以(m,n)的形式列出所有的基本事件,并求“m,n满足”的事件A的概率.