题目内容
【题目】已知函数,若存在实数,使得等式对于定义域内的任意实数均成立,则称函数为“可平衡”函数,有序数对称为函数的“平衡”数对.
(1)若,判断是否为“可平衡”函数,并说明理由;
(2)若且,均为的“可平衡”数对,当时,方程有两个不相等的实根,求实数的取值范围.
【答案】(1)是“可平衡”函数,理由见解析;(2)
【解析】
(1)由“可平衡”函数可得,整理可得,即可求解;
(2)分别将“可平衡”数对代入可得,,则,则可转化为有两个解,进而求解即可
(1)假设是“可平衡”函数,则由题意应有:
,
所以,
即,
则,所以,
所以存在,使得等式对于定义域内的任意实数均成立,
所以是“可平衡”函数
(2)由题,,
所以;
又,
所以,
所以,
所以有两个解,
因为,单调递减,
故不存在两个解,
故的解集为
练习册系列答案
相关题目
【题目】随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.
年龄(单位:岁) | ||||||
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年龄”45岁为分界点,由以上统计数据完成下面列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;
年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
赞成 | |||
不赞成 | |||
合计 |
(Ⅱ)若从年龄在和的被调查人中按照分层抽样的方法选取6人进行追踪调查,并给予其中3人“红包”奖励,求3人中至少有1人年龄在的概率.
参考数据如下:
附临界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的观测值: (其中)