题目内容
(本小题满分12分)设数列
的前
项和为
,且
;数列
为等差数列,且
,
.
(Ⅰ) 求数列
的通项公式;
(Ⅱ) 若
,
为数列
的前
项和. 求证:
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201149114491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201149145297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201149161388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201149223612.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201149239481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201149301462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201149317498.png)
(Ⅰ) 求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201149114491.png)
(Ⅱ) 若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201149489854.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201149520373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201149535450.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201149145297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201149723570.png)
解:(1)由
,令
,则
,又
,所以
.
,则
. 当
时,由
,可得
.即
.
所以
是以
为首项,
为公比的等比数列,于是
. …………4分
(2)数列
为等差数列,公差
,可得
. ………………6分
从而![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232011504561017.png)
.
…
.
从而
. …………………………12分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201149754614.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201149785357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201149879571.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201149894473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201149910531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201149925702.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201149988566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201150035437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201149754614.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201150081914.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201150097621.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201149114491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201149910531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201150315314.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201150347640.png)
(2)数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201149239481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201150425865.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201150440560.png)
从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232011504561017.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201150471172.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201150503172.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201150471172.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201150565164.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232011505963548.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232011506121943.png)
从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232011506271025.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目