题目内容
已知数列满足:.
(Ⅰ)求;
(Ⅱ)设,求数列的通项公式;
(Ⅲ)设,不等式恒成立时,求实数的取值范围.
(Ⅰ)求;
(Ⅱ)设,求数列的通项公式;
(Ⅲ)设,不等式恒成立时,求实数的取值范围.
(Ⅰ)
∵ ∴……3分
(Ⅱ)∵ ∴
∴数列{}是以-4为首项,-1为公差的等差数列.∴.--------6分
(Ⅲ)由于,所以,从而--------7分
∴
∴--------8分
由条件可知恒成立即可满足条件,设
当时,恒成立
当时,由二次函数的性质知不可能成立
当时,对称轴 ,在为单调递减函数.
,∴ ∴时恒成立。综上知:时,恒成立
∵ ∴……3分
(Ⅱ)∵ ∴
∴数列{}是以-4为首项,-1为公差的等差数列.∴.--------6分
(Ⅲ)由于,所以,从而--------7分
∴
∴--------8分
由条件可知恒成立即可满足条件,设
当时,恒成立
当时,由二次函数的性质知不可能成立
当时,对称轴 ,在为单调递减函数.
,∴ ∴时恒成立。综上知:时,恒成立
略
练习册系列答案
相关题目