ÌâÄ¿ÄÚÈÝ
ÒÑÖªÖ±ÏßlÓëÍÖÔ²C£º
+
=1½»ÓÚP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©Á½²»Í¬µã£¬ÇÒ¡÷OPQµÄÃæ»ýS¡÷OPQ=
£¬ÆäÖÐOΪ×ø±êԵ㣮
£¨¢ñ£©Ö¤Ã÷x12+x22ºÍy12+y22¾ùΪ¶¨Öµ£»
£¨¢ò£©ÉèÏ߶ÎPQµÄÖеãΪM£¬Çó|OM|•|PQ|µÄ×î´óÖµ£»
£¨¢ó£©ÍÖÔ²CÉÏÊÇ·ñ´æÔÚµãD£¬E£¬G£¬Ê¹µÃS¡÷ODE=S¡÷ODG=S¡÷OEG=
£¿Èô´æÔÚ£¬Åжϡ÷DEGµÄÐÎ×´£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
x2 |
3 |
y2 |
2 |
| ||
2 |
£¨¢ñ£©Ö¤Ã÷x12+x22ºÍy12+y22¾ùΪ¶¨Öµ£»
£¨¢ò£©ÉèÏ߶ÎPQµÄÖеãΪM£¬Çó|OM|•|PQ|µÄ×î´óÖµ£»
£¨¢ó£©ÍÖÔ²CÉÏÊÇ·ñ´æÔÚµãD£¬E£¬G£¬Ê¹µÃS¡÷ODE=S¡÷ODG=S¡÷OEG=
| ||
2 |
£¨¢ñ£©1¡ãµ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬P£¬QÁ½µã¹ØÓÚxÖá¶Ô³Æ£¬
ËùÒÔx1=x2£¬y1=-y2£¬
¡ßP£¨x1£¬y1£©ÔÚÍÖÔ²ÉÏ£¬
¡à
+
=1¢Ù
ÓÖ¡ßS¡÷OPQ=
£¬
¡à|x1||y1|=
¢Ú
ÓÉ¢Ù¢ÚµÃ|x1|=
£¬|y1|=1£®´Ëʱx12+x22=3£¬y12+y22=2£»
2¡ãµ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÊÇÖ±ÏßlµÄ·½³ÌΪy=kx+m£¨m¡Ù0£©£¬½«Æä´úÈë
+
=1µÃ
£¨3k2+2£©x2+6kmx+3£¨m2-2£©=0£¬¡÷=36k2m2-12£¨3k2+2£©£¨m2-2£©£¾0
¼´3k2+2£¾m2£¬
ÓÖx1+x2=-
£¬x1•x2=
£¬
¡à|PQ|=
=
£¬
¡ßµãOµ½Ö±ÏßlµÄ¾àÀëΪd=
£¬
¡àS¡÷OPQ=
•
=
£¬
ÓÖS¡÷OPQ=
£¬
ÕûÀíµÃ3k2+2=2m2£¬´Ëʱx12+x22=£¨x1+x2£©2-2x1x2=£¨-
£©2-2
=3£¬
y12+y22=
£¨3-x12£©+
£¨3-x22£©=4-
£¨x12+x22£©=2£»
×ÛÉÏËùÊöx12+x22=3£¬y12+y22=2£®½áÂÛ³ÉÁ¢£®
£¨¢ò£©1¡ãµ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬ÓÉ£¨¢ñ£©Öª
|OM|=|x1|=
£¬|PQ|=2|y1|=2£¬
Òò´Ë|OM|•|PQ|=
£®
2¡ãµ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÓÉ£¨¢ñ£©Öª
=-
£¬
=k
+m=
=
|OM|2=£¨
£©2+£¨
£©2=
+
=
=
(3-
)£¬
|PQ|2=£¨1+k2£©
=
=2£¨2+
£©£¬
ËùÒÔ|OM|2|PQ|2=
(3-
)¡Á2¡Á(2+
)=£¨3-
£©£¨2+
£©
¡Ü(
)2=
£®
|OM|•|PQ|¡Ü
£®µ±ÇÒ½öµ±3-
=2+
£¬
¼´m=¡À
ʱ£¬µÈºÅ³ÉÁ¢£®
×ÛºÏ1¡ã2¡ãµÃ|OM|•|PQ|µÄ×î´óֵΪ
£»
£¨¢ó£©ÍÖÔ²CÉϲ»´æÔÚÈýµãD£¬E£¬G£¬Ê¹µÃS¡÷ODE=S¡÷ODG=S¡÷OEG=
£¬
Ö¤Ã÷£º¼ÙÉè´æÔÚD£¨u£¬v£©£¬E£¨x1£¬y1£©£¬G£¨x2£¬y2£©£¬Ê¹µÃS¡÷ODE=S¡÷ODG=S¡÷OEG=
ÓÉ£¨¢ñ£©µÃ
u2+x12=3£¬u2+x22=3£¬x12+x22=3£»v2+y12=2£¬v2+y22=2£¬y12+y22=2
½âµÃu2=x12=x22=
£»v2=y12=y22=1£®
Òò´Ëu£¬x1£¬x2Ö»ÄÜ´Ó¡À
ÖÐÑ¡È¡£¬
v£¬y1£¬y2Ö»ÄÜ´Ó¡À1ÖÐÑ¡È¡£¬
Òò´ËµãD£¬E£¬G£¬Ö»ÄÜÔÚ£¨¡À
£¬¡À1£©ÕâËĵãÖÐÑ¡È¡Èý¸ö²»Í¬µã£¬
¶øÕâÈýµãµÄÁ½Á½Á¬ÏßÖбØÓÐÒ»Ìõ¹ýԵ㣬ÓëS¡÷ODE=S¡÷ODG=S¡÷OEG=
ì¶Ü£®
ËùÒÔÍÖÔ²CÉϲ»´æÔÚÂú×ãÌõ¼þµÄÈýµãD£¬E£¬G£®
ËùÒÔx1=x2£¬y1=-y2£¬
¡ßP£¨x1£¬y1£©ÔÚÍÖÔ²ÉÏ£¬
¡à
x12 |
3 |
y12 |
2 |
ÓÖ¡ßS¡÷OPQ=
| ||
2 |
¡à|x1||y1|=
| ||
2 |
ÓÉ¢Ù¢ÚµÃ|x1|=
| ||
2 |
2¡ãµ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÊÇÖ±ÏßlµÄ·½³ÌΪy=kx+m£¨m¡Ù0£©£¬½«Æä´úÈë
x2 |
3 |
y2 |
2 |
£¨3k2+2£©x2+6kmx+3£¨m2-2£©=0£¬¡÷=36k2m2-12£¨3k2+2£©£¨m2-2£©£¾0
¼´3k2+2£¾m2£¬
ÓÖx1+x2=-
6km |
3k2+2 |
3(m2-2) |
3k2+2 |
¡à|PQ|=
1+k2 |
(x1+x2)2-4x1x2 |
1+k2 |
2
| ||||
3k2+2 |
¡ßµãOµ½Ö±ÏßlµÄ¾àÀëΪd=
|m| | ||
|
¡àS¡÷OPQ=
1 |
2 |
1+k2 |
2
| ||||
3k2+2 |
|m| | ||
|
| ||||
3k2+2 |
ÓÖS¡÷OPQ=
| ||
2 |
ÕûÀíµÃ3k2+2=2m2£¬´Ëʱx12+x22=£¨x1+x2£©2-2x1x2=£¨-
6km |
3k2+2 |
3(m2-2) |
3k2+2 |
y12+y22=
2 |
3 |
2 |
3 |
2 |
3 |
×ÛÉÏËùÊöx12+x22=3£¬y12+y22=2£®½áÂÛ³ÉÁ¢£®
£¨¢ò£©1¡ãµ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬ÓÉ£¨¢ñ£©Öª
|OM|=|x1|=
| ||
2 |
Òò´Ë|OM|•|PQ|=
6 |
2¡ãµ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÓÉ£¨¢ñ£©Öª
x1+x2 |
2 |
3k |
2m |
y1+y2 |
2 |
x1+x2 |
2 |
-3k2+2m2 |
2m |
1 |
m |
|OM|2=£¨
x1+x2 |
2 |
y1+y2 |
2 |
9k2 |
4m2 |
1 |
m2 |
6m2-2 |
4m2 |
1 |
2 |
1 |
m2 |
|PQ|2=£¨1+k2£©
24(3k2+2-m2) |
(2+3k2)2 |
2(2m2-1) |
m2 |
1 |
m2 |
ËùÒÔ|OM|2|PQ|2=
1 |
2 |
1 |
m2 |
1 |
m2 |
1 |
m2 |
1 |
m2 |
¡Ü(
3-
| ||||
2 |
25 |
4 |
|OM|•|PQ|¡Ü
5 |
2 |
1 |
m2 |
1 |
m2 |
¼´m=¡À
2 |
×ÛºÏ1¡ã2¡ãµÃ|OM|•|PQ|µÄ×î´óֵΪ
5 |
2 |
£¨¢ó£©ÍÖÔ²CÉϲ»´æÔÚÈýµãD£¬E£¬G£¬Ê¹µÃS¡÷ODE=S¡÷ODG=S¡÷OEG=
| ||
2 |
Ö¤Ã÷£º¼ÙÉè´æÔÚD£¨u£¬v£©£¬E£¨x1£¬y1£©£¬G£¨x2£¬y2£©£¬Ê¹µÃS¡÷ODE=S¡÷ODG=S¡÷OEG=
| ||
2 |
ÓÉ£¨¢ñ£©µÃ
u2+x12=3£¬u2+x22=3£¬x12+x22=3£»v2+y12=2£¬v2+y22=2£¬y12+y22=2
½âµÃu2=x12=x22=
3 |
2 |
Òò´Ëu£¬x1£¬x2Ö»ÄÜ´Ó¡À
| ||
2 |
v£¬y1£¬y2Ö»ÄÜ´Ó¡À1ÖÐÑ¡È¡£¬
Òò´ËµãD£¬E£¬G£¬Ö»ÄÜÔÚ£¨¡À
| ||
2 |
¶øÕâÈýµãµÄÁ½Á½Á¬ÏßÖбØÓÐÒ»Ìõ¹ýԵ㣬ÓëS¡÷ODE=S¡÷ODG=S¡÷OEG=
| ||
2 |
ËùÒÔÍÖÔ²CÉϲ»´æÔÚÂú×ãÌõ¼þµÄÈýµãD£¬E£¬G£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿