题目内容
10.已知命题p:?x∈R,2x2+1>0,则( )A. | ¬p:?x∈R,2x2+1≤0 | B. | ¬p:?x∈R,2x2+1≤0 | C. | ¬p:?x∈R,2x2+1<0 | D. | ¬p:?x∈R,2x2+1<0 |
分析 根据全称命题的否定是特称命题,即可得到结论.
解答 解:命题为全称命题,则命题的否定为::?x∈R,2x2+1≤0,
故选:B
点评 本题主要考查含有量词的命题的否定,比较基础.
练习册系列答案
相关题目
20.sin(θ+75°)+cos(θ+45°)-$\sqrt{3}$cos(θ+15°)=( )
A. | ±1 | B. | 1 | C. | -1 | D. | 0 |
15.某学校有学生2500人,教师350人,后勤职工150人,为了调查对食堂服务的满意度,用分层抽样从中抽取300人,则学生甲被抽到的概率为( )
A. | $\frac{1}{10}$ | B. | $\frac{1}{300}$ | C. | $\frac{1}{2500}$ | D. | $\frac{1}{3000}$ |
2.定义$\frac{n}{{p}_{1}+{p}_{2}+…+{p}_{n}}$为n个正数p1,p2,…,pn的“均倒数”.若已知正数数列{an}的前n项的“均倒数”为$\frac{1}{2n+1}$,又bn=$\frac{{a}_{n}+1}{4}$,则$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+$\frac{1}{{b}_{3}{b}_{4}}$+…+$\frac{1}{{b}_{2014}{b}_{2015}}$的值为( )
A. | $\frac{1}{2014}$ | B. | $\frac{1}{2015}$ | C. | $\frac{2013}{2014}$ | D. | $\frac{2014}{2015}$ |