题目内容
【题目】已知抛物线的焦点和,点为抛物线上的动点,则取到最小值时点的坐标为( )
A. B. C. D.
【答案】A
【解析】
利用抛物线的定义,将点P到其焦点的距离转化为它到其准线的距离即可.
根据题意,作图.
设点P在其准线x=﹣1上的射影为M,有抛物线的定义得:|PF|=|PM|
∴欲使|PA|+|PF|取得最小值,就是使|PA|+|PM|最小,
∵|PA|+|PM|≥|AM|(当且仅当M,P,A三点共线时取“=”),
∴|PA|+|PF|取得最小值时(M,P,A三点共线时),
点P的纵坐标y0=1,设其横坐标为x0,
∵P(x0,1)为抛物线y2=4x上的点,
∴x0,
则有当P为(,1)时,|PA|+|PF|取得最小值为3.
故选:A.
练习册系列答案
相关题目
【题目】某学校为了了解学生使用手机的情况,分别在高一和高二两个年级各随机抽取了100名学生进行调查.下面是根据调查结果绘制的学生日均使用手机时间的频数分布表和频率分布直方图,将使用手机时间不低于80分钟的学生称为“手机迷”.
高一学生日均使用手机时间的频数分布表
时间分组 | 频数 |
[0,20) | 12 |
[20,40) | 20 |
[40,60) | 24 |
[60,80) | 18 |
[80,100) | 22 |
[100,120] | 4 |
(1)将频率视为概率,估计哪个年级的学生是“手机迷”的概率大?请说明理由.
(2)在高二的抽查中,已知随机抽到的女生共有55名,其中10名为“手机迷”.根据已知条件完成下面的2×2列联表,并据此资料你有多大的把握认为“手机迷”与性别有关?
非手机迷 | 手机迷 | 合计 | |
男 | |||
女 | |||
合计 |
附:随机变量(其中为样本总量).
参考数据 | 0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |