题目内容

11.设函数f(x)的定义域为D,若函数f(x)满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域是[$\frac{a}{2}$,$\frac{b}{2}$],则称f(x)为“倍缩函数”,若函数f(x)=log2(2x+t)为“倍缩函数”,则实数t的取值范围是(  )
A.(0,$\frac{1}{4}$)B.(-∞,$\frac{1}{4}$)C.(0,$\frac{1}{4}$]D.(-∞,$\frac{1}{4}$]

分析 根据“倍缩函数”的定义,构造出方程组,利用方程组的解都大于0,求出t的取值范围.

解答 解:∵函数f(x)=f(x)=log2(2x+t)为“倍缩函数”,
且满足存在[a,b]⊆D,使f(x)在[a,b]上的值域是[$\frac{a}{2}$,$\frac{b}{2}$],
∴f(x)在[a,b]上是增函数;
∴$\left\{\begin{array}{l}{lo{g}_{2}({2}^{a}+t)=\frac{a}{2}}\\{lo{g}_{2}({2}^{b}+t)=\frac{b}{2}}\end{array}\right.$,
即$\left\{\begin{array}{l}{{2}^{a}+t={2}^{\frac{a}{2}}}\\{{2}^{b}+t={2}^{\frac{b}{2}}}\end{array}\right.$,
∴a,b是方程2x-${2}^{\frac{x}{2}}$+t=0的两个根,
设m=${2}^{\frac{x}{2}}$=$\sqrt{{2}^{x}}$,则m>0,此时方程为m2-m+t=0即方程有两个不等的实根,且两根都大于0;
∴$\left\{\begin{array}{l}{(-1)^{2}-4t>0}\\{t>0}\end{array}\right.$,
解得:0<t<$\frac{1}{4}$,
∴满足条件t的范围是(0,$\frac{1}{4}$),
故选:A.

点评 本题主要考查函数的值域问题,利用对数函数和指数函数的性质,是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网