题目内容
【题目】已知函数.
(1)证明:当时,函数有唯一的极值点;
(2)设为正整数,若不等式在内恒成立,求的最大值.
【答案】(1)证明见解析(2)2
【解析】
(1)对函数进行求导,构造函数,对函数进行求导并判断其单调性,结合零点存在性定理,分别求出使和的的取值范围,从而使命题得证;
(2)当时,不等式恒成立等价于对恒成立,令,得,又因为为正整数,所以或2,当时,不等式对恒成立,即对恒成立,设,对函数进行求导,判断其单调性并求在上的最小值,只需求得即可求得的最大值2.
证明:(1)因为函数的定义域为,
设,则.
①当时,因为,所以在内单调递增,又因为,
,
所以存在,使,对于,都有,对于,都有.
②当时,.
综上可得,,当时,,当.
因此,当时,函数有唯一的极值点.
(2)当时,不等式恒成立等价于
对恒成立,
令,得,又因为为正整数,所以或2,
当时,不等式对恒成立,
即对恒成立,
设,则.
设,则,因为当时,,
所以函数在上单调递增,又因为,
所以当时,,即.
令,得,因为,所以当时,,
当时,,所以,
又因为,所以,因此,当时,恒成立.
也就是说当时,不等式在内恒成立.
故的最大值为2.
【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量y(g)与尺寸x(mm)之间近似满足关系式c为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品.现随机抽取6件合格产品,测得数据如下:
尺寸 | 38 | 48 | 58 | 68 | 78 | 88 |
质量 | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
质量与尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(1)现从抽取的6件合格产品中再任选3件,记ξ为取到优等品的件数,试求随机变量ξ的分布列和期望;
(2)根据测得数据作了初步处理,得相关统计量的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
根据所给统计量,求y关于x的回归方程.
附:对于样本,其回归直线的斜率和截距的最小二乘估计公式分别为:.
【题目】某公司为了了解一种新产品的销售情况,对该产品100天的销售数量做调查,统计数据如下图所示:
销售数量(件) | 48 | 49 | 52 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | |
天数 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 |
经计算,上述样本的平均值,标准差.
(Ⅰ)求表格中字母的值;
(Ⅱ)为评判该公司的销售水平,用频率近似估计概率,从上述100天的销售业绩中随机抽取1天,记当天的销售数量为,并根据以下不等式进行评判(表示相应事件的概率);
①;②;③.
评判规则是:若同时满足上述三个不等式,则销售水平为优秀;仅满足其中两个,则等级为良好;若仅满足其中一个,则等级为合格;若全部不满足,则等级为不合格.试判断该公司的销售水平;
(Ⅲ)从上述100天的样本中随机抽取2个,记样本数据落在内的数量为,求的分布列和数学期望.