题目内容
【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量y(g)与尺寸x(mm)之间近似满足关系式c为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品.现随机抽取6件合格产品,测得数据如下:
尺寸 | 38 | 48 | 58 | 68 | 78 | 88 |
质量 | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
质量与尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(1)现从抽取的6件合格产品中再任选3件,记ξ为取到优等品的件数,试求随机变量ξ的分布列和期望;
(2)根据测得数据作了初步处理,得相关统计量的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
根据所给统计量,求y关于x的回归方程.
附:对于样本,其回归直线的斜率和截距的最小二乘估计公式分别为:.
【答案】(1)分布列见解析,;(2)
【解析】
(1)优等品的质量与尺寸的比在区间内,可知随机抽取的6件合格产品中,有3件为优等品,可知可取的值有,分别求出对应的概率,进而可列出分布列并求出数学期望;
(2)对()两边取自然对数得,令,得,且,进而根据所给统计量及最小二乘估计公式,可求出,从而可求出,即可得到关于的回归方程.
(1)由题意,优等品的质量与尺寸的比在区间内,而,
所以随机抽取的6件合格产品中,有3件为优等品,3件为非优等品.
现从抽取的6件合格产品中再任选3件,则取到优等品的件数,
,,
,.
则的分布列为:
0 | 2 | |||
所以.
(2)对()两边取自然对数得,
令,得,且,根据所给统计量及最小二乘估计公式有,
,
,即,故,
所求关于的回归方程为.
【题目】某服装店每年春季以每件15元的价格购入型号童裤若干,并开始以每件30元的价格出售,若前2个月内所购进的型号童裤没有售完,则服装店对没卖出的型号童裤将以每件10元的价格低价处理(根据经验,1个月内完全能够把型号童裤低价处理完毕,且处理完毕后,该季度不再购进型号童裤).该服装店统计了过去18年中每年该季度型号童裤在前2个月内的销售量,制成如下表格(注:视频率为概率).
前2月内的销售量(单位:件) | 30 | 40 | 50 |
频数(单位:年) | 6 | 8 | 4 |
(1)若今年该季度服装店购进型号童裤40件,依据统计的需求量试求服装店该季度销售型号童裤获取利润的分布列和期望;(结果保留一位小数)
(2)依据统计的需求量求服装店每年该季度在购进多少件型号童裤时所获得的平均利润最大.