题目内容
【题目】已知点A(﹣2,0),B(2,0),P(x0 , y0)是直线y=x+3上任意一点,以A,B为焦点的椭圆过P,记椭圆离心率e关于x0的函数为e(x0),那么下列结论正确的是( )
A.e与x0一一对应
B.函数e(x0)无最小值,有最大值
C.函数e(x0)是增函数
D.函数e(x0)有最小值,无最大值
【答案】B
【解析】解:由题意可得c=2,椭圆离心率 .
故当a取最大值时e取最小,a取最小值时e取最大.
由椭圆的定义可得|PA|+|PB|=2a, ,
由于|PA|+|PB|有最小值而没有最大值,
即a有最小值而没有最大值,故椭圆离心率e有最大值而没有最小值,故B正确,且D不正确.
当直线y=x+3和椭圆相交时,这两个交点到A、B两点的距离之和相等,都等于2a,
故这两个交点对应的离心率e相同,故A不正确.
由于当x0的取值趋于负无穷大时,|PA|+|PB|=2a趋于正无穷大;
而当x0的取值趋于正无穷大时,|PA|+|PB|=2a也趋于正无穷大,
故函数e(x0)不是增函数,故C不正确.
故选B.

练习册系列答案
相关题目
【题目】为了解某班学生喜爱体育运动是否与性别相关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱体育运动 | 不喜爱体育运动 | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 50 |
已知在全部女生中随机调查2人,恰好调查到的2位女生都喜爱体育运动的概率为
(1)请将上面的列联表补充完整(不用写计算过程)
(2)能偶在犯错误的概率不超过0.005的前提下认为喜爱体育运动与性别有关?说明你的理由;
下面的临界值表供参考:
P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2= .其中n=a+b+c+d)