题目内容
【题目】为了解某班学生喜爱体育运动是否与性别相关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱体育运动 | 不喜爱体育运动 | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 50 |
已知在全部女生中随机调查2人,恰好调查到的2位女生都喜爱体育运动的概率为
(1)请将上面的列联表补充完整(不用写计算过程)
(2)能偶在犯错误的概率不超过0.005的前提下认为喜爱体育运动与性别有关?说明你的理由;
下面的临界值表供参考:
P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2= .其中n=a+b+c+d)
【答案】
(1)解:设女生共有n人,则 = ,∴n=25
列联表如下:
喜好体育运动 | 不喜好体育运动 | 合计 | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
(2)解:K2= =8.333>7.879.
∴在犯错误的概率不超过0.005的前提下认为喜好体育运动与性别有关.
【解析】(1)根据在全部女生中随机调查2人,恰好调查到的2位女生都喜爱体育运动的概率为 ,求出全部女生人数,即可得到列联表;(2)根据公式计算K2 , 对照临界值表作结论.
【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重,大气污染可引起心悸、呼吸困难等心肺疾病,为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查,得到如下的列联表.
患心肺疾病 | 不患心肺疾病 | 合计 | |
男 | 5 | ||
女 | 10 | ||
合计 | 50 |
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为 ,
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
(3)已知在患心肺疾病的10位女性中,有3位又患有胃病,现在从患心肺疾病的10位女性中,选出3名进行其它方面的排查,记选出患胃病的女性人数为ξ,求ξ的分布列、数学期望以及方差.
下面的临界值表仅供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |