题目内容
【题目】已知的直角顶点在轴上,点,为斜边的中点,且平行于轴.
(1)求点的轨迹方程;
(2)设点的轨迹为曲线,直线与的另一个交点为.以为直径的圆交轴于、,记此圆的圆心为,,求的最大值.
【答案】(1).
(2).
【解析】分析:(1) 设点的坐标为,表示点D,A坐标,再根据 列方程解得点的轨迹方程;(2)设直线的方程为,与抛物线方程联立,根据韦达定理以及中点坐标公式得圆心坐标,解得半径,再根据垂径定理得,最后根据函数值域得最小值,即的最大值.
详解:(1)设点的坐标为,则的中点的坐标为,点的坐标为.
,,
由,得,即,
经检验,当点运动至原点时,与重合,不合题意舍去.
所以,轨迹的方程为.
(2)依题意,可知直线不与轴重合,设直线的方程为,点、的坐标分别为、,圆心的坐标为.
由,可得,∴,.
∴,∴.
∴圆的半径 .
过圆心作于点,则.
在中, ,
当,即垂直于轴时,取得最小值为,取得最大值为,
所以,的最大值为.
练习册系列答案
相关题目
【题目】某同学解答一道三角函数题:“已知函数,且.
(Ⅰ)求的值;
(Ⅱ)求函数在区间上的最大值及相应x的值.”
该同学解答过程如下:
解答:(Ⅰ)因为,所以.因为,
所以.
(Ⅱ)因为,所以.令,则.
画出函数在上的图象,
由图象可知,当,即时,函数的最大值为.
下表列出了某些数学知识:
任意角的概念 | 任意角的正弦、余弦、正切的定义 |
弧度制的概念 | ,的正弦、余弦、正切的诱导公式 |
弧度与角度的互化 | 函数,,的图象 |
三角函数的周期性 | 正弦函数、余弦函数在区间上的性质 |
同角三角函数的基本关系式 | 正切函数在区间上的性质 |
两角差的余弦公式 | 函数的实际意义 |
两角差的正弦、正切公式 | 参数A,,对函数图象变化的影响 |
两角和的正弦、余弦、正切公式 | 二倍角的正弦、余弦、正切公式 |
请写出该同学在解答过程中用到了此表中的哪些数学知识.