题目内容

【题目】某同学解答一道三角函数题:已知函数,且

(Ⅰ)求的值;

(Ⅱ)求函数在区间上的最大值及相应x的值.

该同学解答过程如下:

解答:(Ⅰ)因为,所以.因为

所以

(Ⅱ)因为,所以.令,则

画出函数上的图象,

由图象可知,当,即时,函数的最大值为

下表列出了某些数学知识:

任意角的概念

任意角的正弦、余弦、正切的定义

弧度制的概念

的正弦、余弦、正切的诱导公式

弧度与角度的互化

函数的图象

三角函数的周期性

正弦函数、余弦函数在区间上的性质

同角三角函数的基本关系式

正切函数在区间上的性质

两角差的余弦公式

函数的实际意义

两角差的正弦、正切公式

参数A对函数图象变化的影响

两角和的正弦、余弦、正切公式

二倍角的正弦、余弦、正切公式

请写出该同学在解答过程中用到了此表中的哪些数学知识.

【答案】任意角的概念,弧度制的概念,任意角的正弦的定义,函数的图象,三角函数的周期性,正弦函数在区间上的性质,参数A对函数图象变化的影响.

【解析】

根据解答过程逐步推导所用的数学知识.

首先,这里出现了负角和弧度表示角,涉及的是任意角的概念和弧度制的概念;由的范围解出,这里涉及的是任意角的正弦的定义;解题时所画的图象涉及的是函数的图象;作出图象后可根据周期性以及单调性计算出最大值,这里涉及的是三角函数的周期性,正弦函数在区间上的性质;用换元法构造正弦函数的图象其实利用的是平移的思想,这里涉及的是参数A对函数图象变化的影响.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网